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Field Hiission in a Magnetic Field*

F. J. Blatt

0Physics Department, Michigan State University,
East Lensing, Michigan

LAJ An expression for the field emission current in a longi-

o 5 nal magnetic field is derived in the zero temperature

limit. Two cases are considered, corresponding to constunt

C) Feii energy (A) and constant electron density (B). In both

cases the calculated current density contains an oscillatory

contribution periodic in I/H as well as a term which increases

as the square of the magnetic field. In case B, however, an

oscillatory contribution appears that is absent in case A.

Since the two oscillatory terms in case B differ in phase and

their amplitudes depend on different powers of H, it should be

possible to distinguish between cases A and B. The current

increase quadratic in H has its origin in the steady diamagnetism

of the electron gas. Using accepted values of effective mass,

Fermi energy, and work function we find that for bismuth the

predicted variations of the emission current with magnetic field

should be readily observable.
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The effects of a strong magnetic field upon the physical

properties of metals, semimetals and semiconductors have received

considerable attention in recent years.1 Much of the impetus

derived from the lucid exposition of Lifshitz and co-workers 2

who demonstrated the far-reaching infe )nces that could be drawn

from measurements of magneto-resistance and Hall effect on pure

single crystals at low temperatures. At the same time Harrison's

work3 provided a simple link between de 11aas-van Alphen data and

what had appeared to be very complicated band structures of

most polyvalent metals. Finally, improved techniques of crystal

purification and growth, the attainment of magnetic fields of

better than 105 gauss by pulse techniques, and the development

of improved experimental techniques account for the rapid accretion

in recent years of de Haas-van Alphen, Shubnikov-de Haas, cyclotron

resonance, and related data on a host of conductors. 4

Application of a magnetic field to a free electron gas

gives rise to highly degenerate energy levels separated by

-K - H = ehit/m*c as well as to regular singularities in the

density-of-states function, thereby exerting a profound influence

on any physical property either directly or indirectly related to

the electronic system. Variations of the magnetic susceptibility,

of the specific heat and of the transport properties periodic



in I are the direct effects most frequently investigated.

The only indirect effect that has been studied is the influence

of a magnetic field on the velocity of sound.
5

On the following pages we focus attention on yet another

direct effect which, as far as we know, has not been the subject

of either theoretical or experimental investigation, namely, the

current emitted from a cold metallic surface in a strong electric

field. The periodic variations in X, Cv , and the transport

properties with magnetic field arise because N( ), the density

of states at the Fermi energy n, exhibits singularities at

intervals periodic in Irl, and all of the aforementioned properties

depend critically upon N(q). By contrast, in high field emission

all the conduction electrons can contribute to the current

although the probability of emission is greater for electrons

of higher energy. The observed current is thus a suitable

integral over the electron distribution, and, consequently, we

would expect the oscillations in I to be somewhat less well

defined. Nevertheless, as we shall see below, periodic variations

of the emission current with magnetic field should be readily

observable under appropriate, physically attainable conditions.

The phenomenon we consider here bears some similarity to

current oscillations in tunnel diodes in strong longitudinal

magnetic fields. 6  In that case the current oscillations arise,

indirectly, from oscillations of the electron Fermi level which



brings forth corresponding changes in the Junction field .

Since the barrier width in a tunnel diode is roughly independent

of energy in the energy range of interest, the electrons that

make the dominant contribution to the tunnel current ale those

in the lowest orbital quantum states. In our case we face a

somewhat different aituation. The width of the barrier increases

with decreasing electron energy and normally only electrons near

the Fermi energy contribute to field emission.8

Calculation of the Ruossion Current

The allowed energy levels of an electron in a magnetic field,

chosen along the z direction, are given by*

G - 61k = - a + -z Tw(l + nk 2 m (1)

where
eH (2)
m*c

Is the cyclotron frequency of electrons of effective mass m*,

and £ is a positive integer or zero.

The number of states with quantum number I and energy between

a and e + de is
N(Qd =E 2e(m*a2,_ 151dNe()h--hc&

The emitted current density is given by the product of the

flux of electrons of energy a incident on the surface of the

metal from within and the penetration probability, D, integrated

over the entire electron distribution. The flux of electrons

*We shall disregard spin splitting throughout this
discussion.
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with energy about a, v. > 0, and quantum number J is

1rl oVs, j(, )Ns'g)de

where f(e) is the Fermi distribution and the factor 1/2 takes

account of the fact that for given a only half the electrons

hkve a positive z-component of velocity. We thus are led to the

following expression for JI, the current density attributable to

the A'th orbital level

Pt 2e2 H
= f (a )DI(a )de (4)
h ho

Finally, the total emission current density is obtained by

saming over all orbital states; i.e., J = j JI.

We now proceed on the assumption that the penetration

probability in a longitudinal magnetic field is the same as in

zero field. Accordingly, DI(e) - D 1(cz,F) is given to good

aproximation by 8

Dj (GZ,F) - exp[-g -

- exp[-g -'+ +I/2 (5)

whlere
g68x i07F /2 v(3.79 x 10"  (6)

d . 2 x lo F (7)(m*lm)'l/?-j62t({3.79 x ldo'Fp/

Here F is the electric field in volts/cm at the surface of

the metal; j is the work function in ev; v(y) and t(y) are
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functions evaluated by Burgess, Kroemer and Houston9 and showu

in Fig. 1.

From (4) and (5) we obtain the simple result

J A B,f f(,)e'/dde (8)

where 2e2 H e-[g+i/d] (Ea)whre • A =

-4/
BA e (8b)

The Integral in Eq. (8) is of a type comror,!y encoun*ered

and is conveniently evaluated in a series in powers of kT/i. In

the present treatment we restrict ourselves to the limit T i-'O

and retain only those non-vanishing term of lowest order in the

expansion parameter. In this approximation

J - jZ'Bjd de%/d-e/d]

- AdZ'[e ( 1  -)/ d _ 1] (9)

The prime on the summation denotes that the zm-x is to be '-aken

over all values of I between 0 and Imax where max is given by

4 Z -1. With aid of the Poisson summation for.,.,l one.nx rKi 2

readily obtains

= Ad fd(er + z(-l) p f , 2 ]C2vp sin(2ift.)
L 1ka 4 2p2 + (ta)/d )2

- (!')(cos(2TISh) + eld)] - sin(2mrpVT?)} (10)

The oscillations in J with H, periodic in 1/H are apparent from

Eq. (10).
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We shall here distinguish between two situations which often

may not be realized in practice but which represent extreme limits.

A. The light-mass conduction band overlaps a heavy-mass

hole band.

B. There is no band overlap whatever.

Case A is approximated by many semimetals, such as bismuth, 0

in which de Haas-van Alphen oscillations are most easily observed.

Case B is probably rare in all but monovalent metals, but nay be

approximated in suitable doped n-type semiconductors, for

example n-InSb.

In case A the high density-of-states hole band will maintain

a fixed Fermi level by accommodating electrons from or ccntributinr

them to the electron band as the magnetic field is varied. In

case B the nuber of electrons will remain fixed and the Fermi

energy now depends on the strength of the applied magnetic field.

In case A, Eq. (10) represents the final result. If, however,

n is fixed, additional oscillatory terms appear that arise from

'the variation of I with H. At constant electron concentration

•he Fermi energy in a magnetic field is given by I 0

I vkT 2 _ 1vM, 4 + I -1wo2

+ o Ver~ 2 1 )q sin X'

(11)
,ihere qois the Fermi energy at T = 0°K, H = 0, and X and % are
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r iven by

x - 2Tqlntico -v4

4 2 2 ldT/Txo (12)

In the zero temperature limit, to which we are restriiiting

our treatment, Eq. (11) reduces to

(H f l( ) 1 ("o3/2 ,L q

It is the Fermi energy I (H), as given by Eq. (13, whicnh

must be substituted in Eq. (10) when evaluating the eri-.lon

current for caee B. Although the field dependence of the Fermi

energy through the monotonic increase with H2 and the occillato.y

terms is relatively small, nevertheless this effect canrot be

neglected, particularly lrFthe rirst-tem--of -iq. t1O) wherc o1~-

Fermi energy appears in the exponent. Prcvided -( it 1.8

permiseibie to replace q by 1 0 in the expression for X, Eq. (12),

.nd also in the arguments of the trigonometric functicin in Eq. (10).

This simplifying approximation cannot be employed at fielft of

3ufficient strength such that tw ?. no, the prevailine uituatlon

already,7 at moderate fields (- 15 kilogauss) .n blvrutl, and at

even low;.er fields in dilute BiSb alloys.

Numerical Evaluation of the 1hission Current

In this section we present results of .. nui-erica' evaluation

of Eq. (10) for bismuth using reasonable valhkesi of electric field

and other parameters. The preferred value of the work function

of bismuth is 4.25 ev; for the Fermi energy 1o and eCfectile
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mass me we take 15.7 x 10- 3 ev and 0.03.05 m,;12 for the electrL;W

field we select a representative value of 3 % 107 volts/cm.

One obtains

- 1.43, d - 1.33 ev

and *- 1.1 x 10 - 3 ev/kgauss.

From these numerical values it follows directly that for reasoi.

arle raenetic fields, less than 50 kilogause uay,
h lo
1 1 and also -r 1.

Wa may therefore uze these ratios as expansicn paramet !s in

the evaluation of Eq. (10). To lowest order in w - we cbo tn
1,(19)2 + 1 tM 2

J = A'fl + 1 1 '0) +04€)2o(O)} (u)

ere A' 2rerns e-g.

G(x) ie tche periodic function

;(x) x- , -< x<

shown in Fig. 2.

Since bismuth approximates case A (constant n) Eq. (14) i3

-,ae dc ired result. At fields near 10 kiloge.uss oscillationa

wirwz amplitudes are about ten per cent of the average c.rnePrt

Should ap.?ear.

For comparison we give also'the result for case B (conzteatL n)

ueing the same numerical parameters. We obtain then, retainiLn,

only terms to order (bw/ o )2



10
1 b,2 1 QjZ2 8-) (o F } /2(

. i + n(- r ) + 0(?o)2G() + 1 )1/2(7x)3/12F amp/cm 2  1)

where _ -pl.(.)

For the parameters we have selected A' z 5000 amp/cm2.

Of the three field dependent terms in (15) the last clearly

dominates at low fields; i.e., when to << qo" As the magnetic

field is increased and ?w approaches 1o, the term involving the

function o(M) takes on increasing importance. Since (9) and

F(y) differ in phase by T/4 and the amplitudes of the escillation

iave a slightly different field dependence, it should be possible

to identify the two experimentally. Finally, we anticipate a

monotonic increase in J with H, given by the term

which has the same origin as the steady diamagnetic susceptibility

'f the electron gas.

Conclusion.

We have investigated theoretically the variation of the

high-field emission current in a longitudinal magnetic field

in the zero-temperature limit within the single-partic.le free

electron approximation. Under suitable conditions, perhaps

most easily realized in bismuth and bismuth-antimony alloys,

-the emission current should show oscillations of the de Haas-

van Alphen type. Moreover, we anticipate a monotonic increase

in emission, quadratic In H.
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The expressions for the emission current in the oases of

constant Fermi energy and constant electron concentration diffor

through the presence, in the latter instance, of an additional

oscillatory term whose phase and field dependence set it apart

from the term which alone determines the oscillatory behavior in

the former case. Since a fixed Fermi energy implies the prasence

of an overlapping high density-of-states band, emission current

variations, apart from their intrinsic interest, may p-,ovide

useful information on the band structure. It may also develop

that the dependence of the emission current on magnetic field

could prove valuable in the study of surface effects in s,-Mi-

metals and some semiconductors.

In our derivation of the equation for the emission curren;

we have assLmied that the penetration probability, D, does not

depend explicitly on the magnetic field. This assumptLon cannot

be Justified either theoretically or by recourse to experimental

data since such is, as yet, non-existent. It may well be that

the function D(ez5 F) depends on H also; this would surely modify

the behavior profoundly, but at present it seems futile to try

;o anticipat ! that contingency.
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LMst or Figures

Figure 1. The fumtioiv(y) and try).

Figure 2. The function (().
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